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Abstract: - The motion planning of the manipulators is a topic in robotics that has been studied extensively and 
there are many solutions available in the literature. However, the motion planning of manipulators considering 
the system dynamics with respect to their energy consumption level is still a challenging problem which 
requires a combination of interdisciplinary studies to yield an optimal solution. In this paper, a framework is 
developed to model the user-defined manipulator, design a motion planner implementing a proposed search 
algorithm, and simulate the robot motion in different environments. The superiority of the search algorithm is 
investigated and the development of the MATLAB framework is discussed thoroughly accompanying the 
simulation results. 
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1 Introduction 
Manipulation is the main or part of many industrial 
and daily applications that involve picking, moving 
and placing objects in different workspaces. Saving 
labor and reducing the cost of operation has been 
always a big challenge for the designers to minimize 
the time and effort needed to perform these tasks. In 
many applications such as working in dangerous 
environment   [1], to dexterous manipulation   [2], and 
inter-zonal placement in industrial workspaces   [3], 
using human operators can be either inefficient or 
dangerous. Industrial robotic manipulators, as one of 
the main groups of robots, are designed to 
manipulate objects and perform tasks with minimum 
contact with a human. 

Motion planning and developing an optimized 
algorithm for converting a high-level task from 
human to a low-level description for the robot, has 
been one of the most challenging problems for the 
programmers. Motion planning is the process of 
generating the best motion for the robot based on 
the defined criteria, restriction on the workspaces, 
and the robot model. This process usually involves 
collision-free configuration, coordinating the robot’s 
motion, dynamic modeling, and object manipulation 
[4]. Motion planning can be generally classified into 
two main groups: motion planning in static 
environment and motion planning in dynamic 
environment. 

In static environment, the obstacles, costs, 
workspace features, and other required information 
for obtaining the optimal path are known and can be 
computed in the pre-processing phase. Hart et al. 
proposed an algorithm for dealing with this type of 
motion planning problem which is known as A* [5]. 
The A* is an heuristic search algorithm and one of 
the most popular algorithms having an easy 
implementation procedure. 

The D* algorithm is an informed incremental 
graph search algorithm that has been widely used 
for the automatic navigation of the mobile robots in 
unknown environment [6]. The D* Lite   [7] which is 
an incremental heuristic search algorithm, combines 
A* algorithm and Dynamic SWSF-FP algorithm [8] 
to determine the best path for the robot while the 
path costs change due to discovering new obstacles 
or changes in obstacle features.  

In this paper, the development and 
implementation of a MATLAB framework for 
modeling the wide range of user-defined (industrial) 
manipulators and generation of a locally optimal 
collision free trajectory is presented.  

A novel approach is applied to combine the 
dynamic model of the manipulator and its actuators 
as a unified on-line equation of motion which yields 
to calculation of energy consumption of the robot 
actuators between any two nodes with pre-defined 
constraints.   
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Here, also a novel modification is proposed to 
the D* Lite [7] (one of the most recent search 
algorithms) to make it considerably faster and more 
efficient. The comparison between the proposed 
search algorithm and other widely known, like the 
A* [5], has been investigated and the results of 
implementation of the modified search algorithm are 
also presented correspondingly. 
 
2 Robotic Manipulator Modeling 
As mentioned in the previous section, there are 
many research papers covering the manipulators 
modeling and there also lots of articles for different 
approaches of motion planning for the manipulators. 
However, combining the robot model with motion 
planning and including the output of the dynamic 
model in the motion planning procedure requires a 
novel methodology. 

Deriving the equation of motion of the robot 
associated with dynamics of the manipulator and its 
actuating system (DC motors in this case), results in 
the calculation of energy consumption between any 
two nodes in the cost function of the search 
algorithm. Of course, reaching a locally optimum 
solution for the robot motion planning cannot be 
effectively done when the cost function is solely 
based on the kinematics of the robot. 

In order to calculate the energy consumption of 
manipulator during its motion from the start node to 
the goal node, the mathematical model of the robot 
has to be developed. Using Hamilton’s principle [9] 
for conservative systems between two states, the 
dynamic model equation of the manipulator can be 
derived as Eq. (1). 

 ( ) ( ) ( )TD q q q C q q G q τ+ + =    (1)   

Where D, C, and G are the inertia matrix, 
Christoffel matrix, and the gravity vector, 
respectively. The DC motors, are widely used for 
robot industrial application and are one of the most 
common actuators for the robotic and control 
systems. Developing the motion of equation of the 
motor and its circuit dynamic equation using 
Kirchhoff’s voltage law and combining the 
developed equation with Eq. (1), the uniform 
equation of motion of the robotic manipulator is: 
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In which  (Nonlinear Gravitational Terms) can be 
calculated using Eq. (3). 
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Table 1. List of parameters and variables in the 
governing equation of the robot-actuator system 

 Name Explanation 

Pa
ra

m
et

er
s 

J Rotor’s moment of inertia 

B Motor viscous friction constant 

Ke Electromotive force constant 

Kt Motor torque constant 

R Electric resistance 

L Electric inductance 

V
ar

ia
bl

es
 

 
Joint’s angular velocity 

i Armature current 

V Armature input voltage 

Using the fourth order of Runge-Kutta method 
for solving the derived differential equation of the 
system gives a very consistent approximation of its 
behavior which is the basis of the search algorithm. 
More details on deriving the governing equation, 
Eq. (2) can be found in [10]. 

Dynamic Model
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And
Energetically Optimized Path

Dynamic Model
of The Actuators

 
Figure 1. Cost function and the robot modeling relationship 

 
 
3 Graph Traversal Search Algorithm 
Graph traversal algorithms deal with the problems 
that are expressible in terms of a search over a map 
of nodes in order to find all the reachable nodes, 
identify the best reachable nodes, and generate the 
best path through a network of nodes with defined 
constraints. 

 Graph search algorithms are mainly categorized 
under either an incremental or an heuristic search 
algorithm. In incremental search algorithms, the 
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search is based on the information from the previous 
search information as a feed for the new search 
while in heuristic search algorithms the heuristic 
information of each node is considered to focus the 
search on minimizing the distance to the goal node. 

Incremental heuristic search algorithms refer to 
the algorithms which use both incremental and 
heuristic search features to speed up the search 
while focusing on reaching the goal node. 

How to use previous search 
results efficiently

Heuristic
Search

Incremental
Search

Artificial Intelligence Algorithm Theory

How to search using heuristic 
info. to guide the search

 
Figure 2. Incremental heuristic algorithms foundation 

 
As previously mentioned, this article focuses on 
solving of partially-known environment search 
problems. In this case some of the reachable nodes 
are known, and some of them are either unknown or 
some of their features change during the robot 
motion over the map. The D* Lite algorithm is one 
of the most recent and most efficient graph search 
algorithms for partially known environments [7]. 
The D* Lite is basically the incremental version of 
A* algorithm. D* Lite implements same navigation 
procedure as D* and it is at least as efficient as D*. 
However, D* lite procedure is much shorter and 
actually different than the D* algorithm. 

In D* Lite two main estimates of cost are 
assigned to each node, g and rhs: 

Table 2. Features of each node in D* Lite algorithm 
Feature Explanation 

g the objective function value 

rhs one-step look-forward of  
the objective function value 

consistent Electromotive force constant 

inconsistent Motor torque constant 

Inconsistent nodes are the nodes on the “open 
list” with the priority of process. As a matter of fact, 
the key value of a node defines the priority of that 
node on the open list which is a combination of the 
g, rhs and heuristic value of the node.  

Table 3. List of functions associated with the priority 
calculation of each node 

Feature Calculation 

rhs ( ) ( ) ( )( )( )min cost ,p Succ urhs u u p g p∈= +  

key 
( ) ( )( ) ( )
( ) ( )( )

min , ,
( )

min ,

g u rhs u h start u
key u

g u rhs u

 +
 =
  

 

The key value of a node, according to Table 3, is 
the summation of the heuristic value of the node, h, 
and the minimum of its g and rhs value. If the key 
value of two nodes are calculated to be exactly the 
same, the minimum of g and rhs values are 
considered to be the tie breaker. 

D* Lite algorithm has five main procedures: 
Initialization, Main Procedure, Key Value 
Calculation, Node Update, and Best Path Generation 
[7]. Creating the open list, setting the initial value of 
nodes (g and rhs), inserting the goal node to the 
open list and setting its rhs value to zero are the 
programming methods of Initialization procedure. 
Unlike A*, the D* Lite algorithm starts the node 
processing from the goal node and the graph search 
will be terminated once the algorithm reaches the 
start node. The Key Value Calculation procedure is 
simply a function with the nodes as its input and the 
key value as the output. This output is later returned 
to the caller procedure (Figure 3). 

 
(a) 

 
(b) 

  Figure 3. (a) Initialization procedure 
 (b) Key Value Calculation procedure 

The Best Path Computation procedure basically 
deals with the consistency of the input node, calls 
the appropriate function based on the consistency 
status of the node, and updates the open list. The 
main procedure is the core procedure of the D* Lite 
algorithm that is designed to repeat the other 
procedures until the best path is found and the 
manipulator reaches the start node. 

According to the depicted procedures in Figure 3 
Figure 4, and Figure 5, after popping the start node 
and updating it, the best path between the start node 
and the goal node can be generated by following the 
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gradient of g values from the start node. As a result, 
to obtain the best path, the g values of all the 
neighboring nodes have to be compared to each 
other which requires a time-consuming sorting 
process. A modification in generation of the best 
path after processing the nodes between the start 
node and the goal node can significantly increase 
the efficiency of this algorithm. 

 
Figure 4. D* Lite Best Path Computation procedure 

 
Figure 5. D* Lite Main procedure 

By adding a function to Node Update procedure 
of D* Lite algorithm, the best path can be easily 
generated by connecting the output nodes of this 

function. According to Figure 6, “Store” function 
saves the best neighbor node for the node that is 
under process. After calculating the rhs value of the 
input node, its best neighboring node is saved as a 
feature of the node. Once the search algorithm 
reaches the start node and the graph traversal is 
terminated, the best path between the start node and 
the goal node can be generated by adding the best 
neighboring nodes one after each other from the 
start node. This modifications totally eliminate any 
extra sorting process after reaching the start node. 
This process on a sample network of nodes is 
depicted in Figure 7. 

U.Remove(u)

u ≠ goal

rhs(u) [Equation 2-34]

u ϵ U

Start

New Node Update 
Procedure

g(u)≠rhs(u)

U.Insert(u,key(u))

End

Yes

No

Yes

Yes

No

No

Store 
the Best Neighbour Node

 

Figure 6. Modification to D* Lite, Node Update procedure 
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Figure 7. The best path between the start and the goal node 

using modified D* Lite algorithm 
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4 MATLAB Framework Development 
The process of robot modeling and also the 
theoretical procedures for the proposed search 
algorithm in partially-known environment were 
provided in the previous sections. For implementing 
the search algorithm on a user-defined manipulator, 
a MATLAB framework is designed to model the 
robot, implement the modified D* Lite algorithm, 
and simulate the robot motion in different scenarios. 

The designed framework consists of a very large 
number of lines scripts in MATLAB with several 
classes, functions, and properties. The overall steps 
(classes) for obtaining a collision free and optimized 
motion planning of a user-defined manipulator are 
included in Table 4. 

Table 4. List of MATLAB classes for modeling and 
implementing the search algorithm*  

Class Purpose 

Robot 
Dynamics 

a class with several functions and properties 
for modeling the robot, developing the 
equations of motion  

Motor 
Dynamics 

a class for developing the equation of motion 
of the user-defined actuator, solving the 
differential equations and calculating the 
energy consumption 

Occupancy 
Analysis 

group of classes and sub-classes for 
generating random configuration of the 
manipulators and identifying the workspace 
accordingly 

MPD* Lite 
a class that is designed to implement the 
proposed search algorithm and find the best 
path with optimized energy consumption 

Robot 
Simulation 

a class for simlating the robot miotion and 
generating the corresponding graphic output 

*all the MATLAB scripts can be found in Appendix A of [11]. 

In the Motor Dynamics class, all the robot 
features such as, links’ length, mass, and 
configuration, stored as cell arrays and are fed to 
Robot Dynamics class where the symbolic methods 
are created. Then all the equations are evaluated in 
Motor Dynamics with the user-defined values and 
also the robot configuration. Solving the equations 
of motion and executing the closed loop control 
method of Coe and Motor Dynamics, the energy 
consumption can be calculated. The output of the 
level of energy consumption for the motion of the 
robot between two given nodes is sent to the search 
algorithm as an input for the best path generation. 
After generation of the best path, the plotting class 
(Plot_2D) simulates the robot motion and provides 
the corresponding graphs showing the joints rotation 
and energy consumption during the robot’s motion. 

Robot Dynamics

Robot’s Features

Motor Dynamics

JacobianJSymbolic

InertiaMatrixDSymbolic

ChrisMatrixCSymbolic

GMatrixGSymbolic

Coe

Energy 
Consumption

Two Desired 
Nodes

 

Figure 8. Workflow of computation of energy consumption 
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Figure 9. Workflow of the modified D* Lite algorithm 

There are two main lists in the proposed search 
algorithm: Open List, and Free Node List. The main 
procedure in the graph search algorithm is to 
prioritize the nodes for processing, labeling them for 
either the Open List or the Free Node List, and 
sorting them based on the defined cost (like energy 
consumption). The first step is the calculation of the 
key value of the Goal node’s neighbors and inserting 
them to the Open List. Sorting the nodes based on 
their key value, the node with highest value will be 
checked, the Goal node is inserted to the Free Node 
List, and all its neighbor will be inserted to the Open 
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List. By repeating the same procedure and checking 
the nodes on the Open List and adding them to the 
Free Node List, the graph search algorithm reaches 
the Start node and finds the best path (Figure 9). 
 
 
5 Simulation and Results 
As discussed in the previous sections, defining some 
typical industrial scenarios and simulation of the 
manipulator’s motion in these scenarios is the last 
step after the modeling and implementation of the 
search algorithm. In this section, the performance of 
A*, D* Lite, and the modified D* Lite MPD* 
algorithms are compared to each other and the 
simulation results are presented correspondingly. 

One of the best approaches for comparing the 
search methods and evaluation of their processing 
time is their worst-case time, computational 
complexity, or memory complexity (in the case they 
are implemented using a computer programming 
language). 

If a search problem can be expressed by O(n) (or 
a linear space), solving this problem takes at least 
time O(n), but in most cases it often usually takes 
much more than that.  That is, to check a space with 
size of n nodes, it will at least take n steps to 
examine all over the space. In analyzing the 
computational complexity, always the worst-case 
should be considered for the evaluation purposes. 
The average-case would be closer to reality but to 
investigate the superiority of an algorithm in all sort 
of problems, the verdict should be done based on the 
worst-case scenario. 

There are some assumptions associated with 
deriving the computational complexity for the 
search algorithms. For the graph traversal 
algorithms, it is assumed that the nodes tree has a 
depth of d and an average branching factor of b. The 
depth can be simply considered as the number of 
levels in the nodes network from the start node to 
the goal node. The other factor, b, in the proposed 
method of this Paper is equal to the number of 
neighbors of each node in the search graph.  

Another assumption for finding the 
computational complexity of the search algorithms 
would be the number of expansion needed to reach 
the optimal path to the goal node. In general, the 
search methods stop and indicate that they reached 
the goal node once they pop a path with a string of 
nodes that includes the goal node; but, not when the 
path is on the queue of the sorting process. Thus, to 
make sure that the found path is the optimal path, 
the algorithm should expand one more time and 
make the depth d+1  [12]. 

The A* as an informed search algorithm or a 
best-first search would have the computational 
complexity of O(bd+1)  [12]. This degree of 
complexity can be easily proved by considering the 
worst-case in which the goal node is at the far, right 
corner node of the network  [12]. In the A* search 
algorithm, the graph search function has to search 
all the nodes, and one more expansion at the end is 
needed to verify the stopping condition. As a result, 
the processing time of the A* algorithm has an 
exponential relationship with the number of nodes. 
This relationship can be investigated in the results 
depicted in Figure 11. 

To derive the computational complexity of the 
D* Lite algorithm, and the MPD* Lite algorithm, 
and compare them with the complexity of the A*, 
the approach has to be different. For this purpose, 
the implemented MATLAB program is investigated 
on its steps complexity which is equivalent to the 
computational complexity of D* Lite algorithm and 
MPD* Lite algorithm. In such investigation the 
number of nodes is considered as the input to the 
algorithm and the worst-case scenario is developed 
accordingly  [13]. 

The computational complexity, with such 
considerations, is a function of number of the 
randomly generated nodes (N) in the preprocessing; 
obstacles (P); average number of neighbors (b); 
number of degree of freedom of the robot (DOF); 
and the changes on the node network (C). The 
computational complexity of the modified D* Lite 
MPD* algorithm based on the MATLAB coding 
explained in section 4, is presented in Table 5. 

Table 5. Computational complexity of modified  
D* Lite MPD* algorithm 

Procedure Worst-case Computational Cost 

Robot configuration DOF 

Robot configuration P 

Obstacle avoidance 11×P×b×N + 15×P×b+8×P×DOF 2×N 

Start/End initialization 2 

Map initialization 5×N 

Finding the best path N 2 + 2×b×N 2 + 10×N + 12×b 

Generating the best path 8×N 2 + 3×N×b + 2×N 2 + 3×N 

Change input C 

TOTAL (2b+11)N 2 + (11P.b+8P.DOF 2+3b+18)N 
+15P.b+12b+DOF+P+C+2 

 
The modified D* Lite MPD* algorithm has the 

computational complexity of O(N2) as shown in 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Amir Feizollahi, Rene V. Mayorga

E-ISSN: 2224-2856 153 Volume 12, 2017



 

 

Table 5, which expresses a polynomial relationship 
between the computational cost and number of 
nodes. The only difference between D* Lite 
algorithm, and its proposed modified version in this 
article, is their procedures for finding the best path 
and its generation. To calculate the computational 
cost of best path generation in D* Lite algorithm, 
Table 5 has to be updated to 2×b×N3 + 10×P×b×N2 
+ 5×N. This change yields the computational 
complexity of O(N3) for D* Lite algorithm. 

For verifying the above-mentioned relationships 
between the processing time and complexity of the 
problem for the A*, the D* Lite, and the modified 
D* Lite MPD* algorithm; five different scenarios 
are defined as the ones in Figure 10. The search 
algorithms are applied to these problems and the 
processing time versus number of the nodes in the 
best path (which is factor of difficulty of a problem) 
are then plotted to make a comparison between the 
performances of the search algorithms. 

The results in Table 6 and Figure 11 show that 
the relationships that were mentioned earlier for the 
complexity analysis of these three search algorithms 
are correct.  
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Figure 10. Five scenarios for comparing modified D* Lite 
MPD*, and A* algorithms efficiency 

 

Table 6. Comparison between the modified D* Lite MPD*, D* 
Lite, and A* search algorithms for five different scenarios 

Scenario Total 
Nodes 

Best Path 
Length 

Processing Time (s) 

MPD* Lite D* Lite A* 

1 91 3 0.125 0.348 0.094 

2 91 7 0.344 1.553 0.891 

3 91 10 1.031 8.564 78.125 

4 182 13 1.063 9.678 593.218 

5 273 21 3.047 40.849 2450.375 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. MPD* Lite, D* Lite, and A* graphs: 
a) MPD* Lite algorithm: processing time graph 
b) D* Lite algorithm: processing time graph 
c) A* Lite algorithm: processing time graph 
d) Comparative graph for five simulated scenarios 
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In the following section, the modeling and 
motion planning of the manipulators based on the 
energy consumption in typical industrial problems 
are discussed. The simulation parameters for 
modeling the DC motors are presented in Table 7. 

Table 7. Simulation parameters of robot’s actuators 
Parameter Description Value 

R  Electric resistance 1 Ω  

L  Electric inductance 0.5 H  

tK  Motor torque constant 10.01 . .N m Amp−  

eK  Electromotive force constant 1 10.02 . .V rad s− −  

b  Motor viscous friction constant 0.1 . .N m s  

pK  PD-Control gain constant 0.1 . .N m s  

5.1. Energetically Optimized Path 
In the first scenario, the motion planner is evaluated 
in a classic manipulation task for a three-link 
manipulator. The start and the goal node are set to 
be on the right side and left side of the obstacle, 
respectively. The desired nodes are set very close to 
the obstacle to verify the collision-free attribute of 
the planner. The obstacle in  Figure 12 can be 
considered as the divider of two different sections in 
an assembly line. More details on the result can be 
found in  Figure 12 and Table 8. 

 
Figure 12. Energetically optimized path for a typical 

manipulation task 

Table 8. Case 1 – detailed results 
Variable Value 

Total number of nodes 87 
Start Node 4 
Goal Node 31 
Joint #1 energy consumption 32.77 
Joint #2 energy consumption 16.90 
Joint #3 energy consumption 3.93 
Total energy consumption 53.61 
Best path length (nodes) 16 

One of the typical manipulation problems for 
robotic arms is their maneuverability in a tight 
crowded workspace. To verify the capability of the 
proposed search algorithm in finding the optimized 
path, a workspace is defined as the one in  13. Six 
obstacles in different shapes and sizes are located to 
limit the robot’s workspace. The robot’s mission is 
to safely manipulate an object from the right corner 
of the workspace and place it in another corner 
between two obstacles while avoiding any collision 
with them. The manipulator is defined to have four 
links of the same length. The energy consumption 
graph, the processing time and the best path is 
depicted in  Figure 13 and Table 9. 

 
Figure 13. Energetically optimized path for the manipulator in a 

crowded workspace 

Table 9. Case 2 – detailed results 
Variable Value 

Total number of nodes 86 
Start Node 77 
Goal Node 79 
Joint #1 energy consumption 62.88 
Joint #2 energy consumption 33.39 
Joint #3 energy consumption 13.27 
Joint #4 energy consumption 3.52 
Total energy consumption 113.1 
Best path length (nodes) 11 

In the third case, the manipulator has seven links, 
six smaller ones to increase the maneuverability and 
one long link to improve the reachability of the goal 
node. In this case, the manipulator is located in the 
center of a very tight workspace and the start and 
the goal nodes are defined on the opposite sides of 
the workspace. The manipulator’s actuators, as 
depicted in  erugiF14 , change the direction of their 
motion several times in order to accomplish the 
manipulation task. More detailed information can be 
found in Table 10. 
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Figure 14. Energetically optimized path for the manipulator in a 

tight workspace 

Table 10. Case 3 – detailed results 
Variable Value 

Total number of nodes 152 

Total energy consumption 1702 
Best path length (nodes) 13 

CPU time 0.41 s 

Large obstacle avoidance is another challenge for 
industrial manipulators motion planning. 
Minimizing the energy consumption and 
accomplishing the assigned task to the manipulator 
with consideration of its motion in the free collision 
zone, makes the problem more difficult. In Figure 
15, the start and the goal node are defined at tow 
opposite corners of the workspace. The robot has to 
undergo few tangles to avoid the big surrounding 
obstacle. In such cases, the pre-process phase, map 
analysis node generation, plays a big role in finding 
the best path for the robot motion from the start 
node to the goal node. More detailed results can be 
found in Table 11. 

 
Figure 15. Energetically optimized path for the manipulator in a 

workspace with large obstacle 

Table 11. Case 4 – detailed results 
Variable Value 

Total number of nodes 42 
Joint #1 energy consumption 25.68 
Joint #2 energy consumption 11.64 
Joint #3 energy consumption 2.22 
Total energy consumption 39.54 
Best path length (nodes) 11 

5.2. Re-planning Using the Modified D* Lite 
In the first case, to verify the re-planning procedure 
of the search algorithm, the robotic arm is located in 
a partially-known environment where some of the 
obstacles are pre-defined (Figure 16). The 
manipulator detects a new obstacle during its 
motion toward the goal node. As a result, all the 
nodes neighboring the new obstacle will have an 
update in their cost and the search algorithm takes 
the re-planning procedure to find another path with 
minimum energy consumption. The corresponding 
result and more details on this scenario can be found 
in  Figure 16. 

Manipulation in hazardous workspace is another 
of the typical applications of manipulators and 
robotic arms. Excessive heat level or radiation can 
ruin the electronics or mechanical component of 
such systems. To minimize the failure chance during 
the manipulation, a common practice is to avoid the 
above mentioned conditions by means of defining 
virtual obstacles as the “No Enter” zones. 

In the defined scenario to test the effectiveness of 
the path planner, the side triangles in Figure 17 are 
the “No Enter” areas with high temperature that is 
not tolerable for the manipulator. The robot initially 
takes a route that is so close to the right-side 
obstacle. The generated path has the minimum cost 
but taking this route might be so risky for the robot. 
Defining a tolerance threshold, the path planner 
regenerates the path which is shown with the lighter 
color in Figure 17. 

 
Figure 16. Re-planning using the modified D* Lite MPD* 

algorithm in case of detecting new obstacle 
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Figure 17. Re-planning using the modified D* Lite algorithm in 

case of avoiding special conditions 

 
 
6 Conclusions 
In the field of robotics, using manipulators in 
different sizes and shapes for delivering a wide 
range of tasks from simple repetitive manipulation 
to performing the maintenance procedure in 
hazardous workspaces, has been always an 
interesting and challenging problem. In this Paper, 
the optimized motion planning of the industrial 
manipulators in partially-known environment is 
addressed and a modified search algorithm is 
proposed and applied to the solution to this problem. 
The mathematical modeling of the robot and its 
actuators is done and the corresponding formulation 
has been derived. The D* Lite algorithm as one of 
the most well-known search algorithms is discussed, 
its superiority over A* algorithm is studied, and a 
modification has been proposed to enhance its 
efficiency. This algorithm was implemented using a 
MATLAB framework for generating the best path 
for the user-defined manipulators in different 
scenarios. Although there may be much more 
possible scenarios to study the efficiency of the 
proposed motion planner, the selected results from 
tens of investigated scenarios are the most concise 
and informative cases. Ongoing research is focused 
on expanding the framework to add the 3D feature 
to the simulation block and improving the 
computation time in the pre-process phase that can 
be a huge jump in increasing the efficiency of the 
developed framework. 
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